Weaker hypotheses for the general projection algorithm with corrections
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Forward-Backward Projection Algorithm for Approximating of the Zero of the Sum of Two Operators
In this paper, a forward-backward projection algorithm is considered for finding zero points of the sum of two operators in Hilbert spaces. The sequence generated by algorithm converges strongly to the zero point of the sum of an $alpha$-inverse strongly monotone operator and a maximal monotone operator. We apply the result for solving the variational inequality problem, fixed po...
متن کاملUpward separations and weaker hypotheses in resource-bounded measure
We consider resource-bounded measure in double-exponential-time complexity classes. In contrast to complexity class separation translating downwards, we show that measure separation translates upwards. For example, μp(NP) 6= 0⇒ μe(NE) 6= 0⇒ μexp(NEXP) 6= 0. We also show that if NE does not have e-measure 0, then the NP-machine hypothesis holds. We give oracles relative to which the converses of...
متن کاملCorrections to 'The Prioritized-Layered Projection Algorithm for Visible Set Estimation'
ÐPrioritized-Layered Projection (PLP) is a technique for fast rendering of high depth complexity scenes. It works by estimating the visible polygons of a scene from a given viewpoint incrementally, one primitive at a time. It is not a conservative technique, instead PLP is suitable for the computation of partially correct images for use as part of time-critical rendering systems. From a very hi...
متن کاملA Projection Algorithm for Regression with Collinearity
Principal component regression (PCR) is often used in regression with multicollinearity. Although this method avoids the problems which can arise in the least squares (LS) approach, it is not optimized with respect to the ability to predict the response variable. We propose a method which combines the two steps in the PCR procedure, namely finding the principal components (PCs) and regression o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analele Universitatii "Ovidius" Constanta - Seria Matematica
سال: 2015
ISSN: 1844-0835
DOI: 10.1515/auom-2015-0043